15.3 (18.3). Протон в однородном магнитном поле движется по окружности. Как изменятся радиус окружности и период обращения протона, если его скорость увеличится?
Для каждой величины определите соответствующий характер изменения:
1) увеличится; 2) уменьшится; 3) не изменится.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Ответ: ____.
Источники:
1. ЕГЭ. Физика. Отличный результат (https://web-physics.ru/smf/index.php?msg=238) / под ред. М. Ю. Демидовой. — Москва: Издательство «Национальное образование», 2022. — 736 с. — (ЕГЭ. ФИПИ — школе).
2. ЕГЭ. Физика. Отличный результат (https://web-physics.ru/smf/index.php?msg=928) / под ред. М. Ю. Демидовой. — Москва: Издательство «Национальное образование», 2024. — 496 с. — (ЕГЭ. Отличный результат. Учебная книга).
Анализ условия. 1) Протон — это элементарная частица, поэтому ее силой тяжести и размерами можно пренебречь. Считаем ее материальной точкой.
2) Заряженная частица в однородном магнитном поле движется по окружности, следовательно, скорость υ частицы перпендикулярна вектору индукции B магнитного поля.
3) По условию увеличивается скорость υ частицы. Масса m частицы, ее заряд q и вектор индукции B магнитного поля не меняются.
Решение. Получим формулы зависимости радиуса R окружности и периода T обращения от скорости υ частицы, ее массы m, заряда q и вектора индукции B магнитного поля.
Так как силой тяжести протона пренебрегаем, то на протон действует только сила Лоренца F. При движении по окружности и сила Лоренца F, и центростремительное ускорение a направлены к центру окружности.
Задачу будем решать в инерциальной системе отсчета (ИСО), связанной с Землей. Тогда в ИСО для материальной точки (протона) можно записать второй закон Ньютона
\[m \cdot a=F,\]
где \( a=\frac{\upsilon ^2}{R},\ \ F=\left| q \right| \cdot B \cdot \upsilon \cdot \sin \alpha , \) q > 0, α = 90°, sin 90º = 1. Тогда
\[\frac{m \cdot \upsilon ^2}{R}=q \cdot \upsilon \cdot B,\ \ R=\frac{m \cdot \upsilon }{q \cdot B}.\ \ \ (1)\]
Период T обращения по окружности найдем из формулы для линейной скорости
\[\upsilon =\frac{2\pi \cdot R}{T},\ \ T=\frac{2\pi \cdot R}{\upsilon }.\]
С учетом уравнения (1) получаем
\[T=\frac{2\pi }{\upsilon }\cdot \frac{m \cdot \upsilon }{q \cdot B}=\frac{2\pi \cdot m}{q \cdot B}.\ \ \ (2)\]
По условию скорость υ частицы увеличивается, а ее масса m, заряд q и вектор индукции B магнитного поля не меняются.
Из уравнения (1) следует, что радиус окружности R увеличится.
Это соответствует изменению № 1.
Из уравнения (2) следует, что период обращения T не изменится.
Это соответствует изменению № 3.
Ответ: 13.